GATE - 2023 ## **ONLINE TEST SERIES** SCHEDULE - ELECTRICAL ENGINEERING **Number of Tests** Topic Wise Subject Wise 26 Mock Test Total 82 #### **TOPIC WISE TESTS** - Each test carries 25 marks and 45 minutes duration - > Test consists of 5 one mark questions and 10 two marks questions | Test
No | Test Name: Syllabus | DATE OF ACTIVATION | |------------|--|--------------------| | EE-01 | Basic Level Electric Circuits — 1: Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady-state analysis, Resonance, Passive filters, Ideal current and voltage sources | Available
Now | | EE-02 | Basic Level Electric Circuits — 2: Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two-port networks, Three phase circuits, Power and power factor in ac circuits. | Available
Now | | EE-03 | Basic Level Electromagnetic Fields – 1: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations | Available
Now | | EE-04 | Basic Level Electromagnetic Fields – 2: Biot-Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations. | Available
Now | | EE-05 | Basic Level Signals and Systems – 1: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems | Available
Now | | EE-06 | Basic Level Signals and Systems – 2: Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform. | Available
Now | | EE-07 | Basic Level Electrical Machines – 1: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto-transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors | Available
Now | | EE-08 | Basic Level Electrical Machines – 2: Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. | Available
Now | | EE-09 | Basic Level Power Systems–1: Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities | Available
Now | | Test
No | Test Name : Syllabus | DATE OF ACTIVATION | |------------|--|--------------------| | EE-10 | Basic Level Power Systems – 2: Bus admittance matrix, GaussSeidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. | Available
Now | | EE-11 | Basic Level Control Systems – 1: Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems | Available
Now | | EE-12 | Basic Level Control Systems – 2: Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix. | Available
Now | | EE-13 | Basic Level Electrical and Electronic Measurements - 1: Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers | Available
Now | | EE-14 | Basic Level Electrical and Electronic Measurements - 2: Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis | Available
Now | | EE-15 | Basic Level Analog and Digital Electronics -1: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers | Available
Now | | EE-16 | Basic Level Analog and Digital Electronics - 2: Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing | Available
Now | | EE-17 | Basic Level Power Electronics - 1: Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing | Available
Now | | EE-18 | Basic Level Power Electronics - 2: Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation | Available
Now | | EE-19 | Basic Level Engg. Mathematics - 1: Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. | Available
Now | | EE-20 | Basic Level Engg. Mathematics - 2: Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, | Available
Now | | Test
No | Test Name : Syllabus | DATE OF
ACTIVATION | |------------|---|-----------------------| | | Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, z-Transform. | | | EE-21 | Basic Level General Aptitude - 1: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction | Available
Now | | EE-22 | Basic Level General Aptitude-2: Numerical computation, numerical estimation, numerical reasoning and data interpretation | Available
Now | | EE-23 | Advance Level Electric Circuits – 1: Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady-state analysis, Resonance, Passive filters, Ideal current and voltage sources | Available
Now | | EE-24 | Advance Level Electric Circuits – 2: Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two-port networks, Three phase circuits, Power and power factor in ac circuits. | Available
Now | | EE-25 | Advance Level Electromagnetic Fields — 1: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations | Available
Now | | EE-26 | Advance Level Electromagnetic Fields – 2: Biot-Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations. | Available
Now | | EE-27 | Advance Level Signals and Systems – 1: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems | Available
Now | | EE-28 | Advance Level Signals and Systems – 2: Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform | Available
Now | | EE-29 | Advance Level Electrical Machines – 1: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto-transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors | Available
Now | | EE-30 | Advance Level Electrical Machines – 2: Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines | Available
Now | | EE-31 | Advance Level Power Systems – 1: Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities | Available
Now | | Test
No | Test Name : Syllabus | DATE OF ACTIVATION | |------------|--|--------------------| | EE-32 | Advance Level Power Systems – 2: Bus admittance matrix, GaussSeidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. | Available
Now | | EE-33 | Advance Level Control Systems – 1: Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems | Available
Now | | EE-34 | Advance Level Control Systems - 2: Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix. | Available
Now | | EE-35 | Advance Level Electrical and Electronic Measurements - 1: Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers | Available
Now | | EE-36 | Advance Level Electrical and Electronic Measurements - 2: Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis | Available
Now | | EE-37 | Advance Level Analog and Digital Electronics - 1: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers | Available
Now | | EE-38 | Advance Level Analog and Digital Electronics - 2: Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing | Available
Now | | EE-39 | Advance Level Power Electronics - 1: Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; | Available
Now | | EE-40 | Advance Level Power Electronics - 2: Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. | Available
Now | | | Advance Level Engg. Mathematics - 1: | | | | Linear Algebra : Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. | | | EE-41 | Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. | Available
Now | | | Differential equations : First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables | | | Test
No | Test Name : Syllabus | DATE OF ACTIVATION | |------------|---|--------------------| | | Advance Level Engg. Mathematics - 2: | | | | Complex variables : Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. | | | EE-42 | Probability and Statistics : Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. | Available
Now | | | Numerical Methods : Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. | | | | Transform Theory: Fourier Transform, Laplace Transform, z-Transform. | | | EE-43 | Advance Level General Aptitude -1: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction | Available
Now | | EE-44 | Advance Level General Aptitude-2: Numerical computation, numerical estimation, numerical reasoning and data interpretation | Available
Now | #### SUBJECT WISE TESTS - Each test carries 50 marks and 90 minutes duration - > Test consists of 10 one mark questions and 20 two marks questions | Test
No | Test Name : Syllabus | DATE OF ACTIVATION | |------------|--|--------------------| | EE-45 | Basic Level Electric Circuits: Network graph, KCL, KVL, Node- and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two port networks, Three phase circuits, Power and power factor in ac circuits. | Available
Now | | EE-46 | Basic Level Electromagnetic Fields: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge- distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations. | Available
Now | | EE-47 | Basic Level Signals and Systems: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform. | Available
Now | | EE-48 | Basic Level Electrical Machines: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests,-regulation and efficiency; Three phase transformers: connections, parallel operation; Auto transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. | Available
Now | | EE-49 | Basic Level Power Systems: Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and-shunt compensation, Electric field distribution and insulators, Distribution systems, Per unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical-components, Symmetrical and unsymmetrical fault analysis, Principles of over current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. | Available
Now | | EE-50 | Basic Level Control Systems: Mathematical modeling and representation of systems, Feedback principle,- transfer function, Block diagrams and Signal flow graphs, Transient and Steady state analysis of linear time invariant systems, Routh-Hurwitz- and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead Lag compensators; P, PI and PID controllers; State space model, State transition matrix. | Available
Now | | EE-51 | Basic Level Electrical and Electronic Measurements: Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis. | Available
Now | | EE-52 | Basic Level Analog and Digital Electronics: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, | Available
Now | | Test
No | Test Name : Syllabus | DATE OF ACTIVATION | |------------|---|--------------------| | | Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing. | | | EE-53 | Basic Level Power Electronics: Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. | Available
Now | | EE-54 | Basic Level Engg. Mathematics: Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, z-Transform | Available
Now | | EE-55 | Basic Level General Aptitude: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction, Numerical computation, numerical estimation, numerical reasoning and data interpretation | Available
Now | | EE-56 | Advanced Electric Circuits & Electromagnetic Fields: Electric Circuits: Network graph, KCL, KVL, Node- and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin's theorem,- Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two port networks, Three phase circuits, Power and power factor in ac circuits. Electromagnetic Fields: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge- distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations. | Available
Now | | EE-57 | Advanced Signals and Systems & Electrical Machines: Signals and Systems: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace | Available
Now | | Test
No | Test Name : Syllabus | DATE OF
ACTIVATION | |------------|--|-----------------------| | | Transform and z-Transform. Electrical Machines: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests,-regulation and efficiency; Three phase transformers: connections, parallel operation; Auto transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. | | | EE-58 | Advanced Control Systems & Electrical and Electronic Measurements: Control Systems: Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady state analysis of linear time invariant systems, Routh-Hurwitz- and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead Lag compensators; P, PI and PID controllers; State space model, State transition matrix. Electrical and Electronic Measurements: Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis. | Available
Now | | EE-59 | Advanced Power Electronics & Analog and Digital Electronics: Power Electronics: Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. Analog and Digital Electronics: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing. | Available
Now | | EE-60 | Advanced Power Systems: Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and-shunt compensation, Electric field distribution and insulators, Distribution systems, Per unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical- components, Symmetrical and unsymmetrical fault analysis, Principles of over current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. | Available
Now | | EE-61 | Advanced Engineering Mathematics: Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Differential equations: First order equations (linear and nonlinear), Higher order linear | Available
Now | | Test
No | Test Name : Syllabus | DATE OF
ACTIVATION | |------------|--|-----------------------| | | differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, z-Transform | | | EE-62 | Advanced General Aptitude: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction, Numerical computation, numerical estimation, numerical reasoning and data interpretation. | Available
Now | | EE-63 | Electric Circuits & Electromagnetic Fields: Electric Circuits: Network graph, KCL, KVL, Node- and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin's theorem,- Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two port networks, Three phase circuits, Power and power factor in ac circuits. Electromagnetic Fields: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge- distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations | Available
Now | | EE-64 | Signals and Systems: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform. Electrical Machines: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests,-regulation and efficiency; Three phase transformers: connections, parallel operation; Auto transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. | Available
Now | | EE-65 | Control Systems & Electrical and Electronic Measurements: Control Systems: Mathematical modeling and representation of systems, Feedback principle,- transfer function, Block diagrams and Signal flow graphs, Transient and Steady state analysis of linear time invariant systems, Routh-Hurwitz- and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead Lag compensators; P, PI and PID controllers; State space model, State transition matrix. | Available
Now | | Test
No | Test Name: Syllabus | DATE OF
ACTIVATION | |------------|---|-----------------------| | | Electrical and Electronic Measurements: Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis. | | | EE-66 | Power Electronics & Analog and Digital Electronics: Power Electronics: Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. Analog and Digital Electronics: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing. | Available
Now | | EE-67 | Power Systems: Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and-shunt compensation, Electric field distribution and insulators, Distribution systems, Per unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical- components, Symmetrical and unsymmetrical fault analysis, Principles of over current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. | Available
Now | | EE-68 | Engineering Mathematics: Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, z-Transform | Available
Now | | EE-69 | General Aptitude: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction, Numerical computation, numerical estimation, numerical reasoning and data interpretation. | Available
Now | ### MOCK TESTS Each test carries 100 marks and 3 hours duration | Test
No | Test Name | DATE OF ACTIVATION | |------------|--------------------------------------|--------------------| | EE-70 | Full Syllabus Test-1 (Basic Level) | Available Now | | EE-71 | Full Syllabus Test-2 (Basic Level) | Available Now | | EE-72 | Full Syllabus Test-3 (Basic Level) | Available Now | | EE-73 | Full Syllabus Test-1 (Advance Level) | Available Now | | EE-74 | Full Syllabus Test-2 (Advance Level) | Available Now | | EE-75 | Full Syllabus Test-3 (Advance Level) | Available Now | | EE-76 | GATE MOCK TEST-1 | Available Now | | EE-77 | GATE MOCK TEST-2 | Available Now | | EE-78 | GATE MOCK TEST-3 | Available Now | | EE-79 | GATE MOCK TEST -4 | Available Now | | EE-80 | GATE MOCK TEST-5 | Available Now | | EE-81 | GATE MOCK TEST-6 | Available Now | # MSQ TYPE TESTS (Subject Wise) > Each test carries 40 marks and 60 Minutes duration | TEST
No | TEST NAME | DATE OF ACTIVATION | |------------|------------------|--------------------| | EE-8 | General Aptitude | Available Now |